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A higher-order decoupling similar to the first-order Bogolyubov-Tyablikov decoupling 
is used to find various correlation functions in the paramagnetic region for a Heisenberg 
ferromagnet. Expressions are given for the susceptibility, the nearest-neighbor correla- 
tion, and autocorrelation at the critical point as well as at high temperatures. 
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I .  I N T R O D U C T I O N  

It is well known that the so-called double-time thermodynamic Green functions 
which were used by Bogolyubov and Tyablikov have had great success especially 
when applied to magnetic problems. (~-7) In the present paper we shall be concerned 
with the Heisenberg ferromagnet--the subject of a great many of the studies made 
so far. However, where most other papers have been dealing with either the low- 
temperature region where spontaneous ordering exists or with the case where a 
magnetic field was applied, so that magnetic ordering is induced, we shall be invest- 
igating the temperature region above the critical point-- the paramagnetic region--in 
zero external magnetic field. This region has come more into the focus of attention 
because of recent interest in phase transitions and studies of physical behavior at 

This paper is based on the first author's Oxford University D. Phil. thesis. A preliminary account 
has been published elsewhere. (I) 

1 Department of Theoretical Physics, Oxford University, Oxford, England. 
2 Present address: Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 

U.S.A. 

149 



150 R . H .  Knapp, Ir., and D. ter Haar 

both sides of transition temperatures. The results obtained so far for this region can be 
summarized as follows/s) From series expansions in the inverse absolute temperature 
T -x it is found that the susceptibility is positive, vanishes as T -1 at infinite temperature, 
and diverges as ( T -  Tc) -4/8 at the Curie temperature Tc .  Approximate methods 
such as the Bogolyubov-Tyablikov decoupling scheme (called in the following the 
RPA [random phase approximation] theory) give the correct asymptotic behavior as 
T---~ 0% but a ( T -  Tc) -2 behavior for T--+ T c ,  a behavior also found in the 
spherical model. (9) 

Brout (1~ recently suggested that excitations corresponding to short-range order 
correlations might exist in the paramagnetic region. These excitations would be 
"quasi-spin-waves" with wavelengths short compared with the correlation length. 
A theoretical treatment by Beeby and Hubbard (m found evidence for such quasi- 
excitations, and Bennett (12) has recently predicted, from considering the generalized 
susceptibility, propagating excitations at wave vectors k greater than a lower limit k~, 
which is proportional to the square root of the inverse susceptibility. The experimental 
evidence for such quasi-excitations is by now considerable, as well. (~8-~7) 

In the following we shall treat the paramagnetic region by extending the 
Bogolyubov-Tyablikov theory. (~,3) We introduce the usual retarded and advanced 
Green functions, G~(t, t') and G,(t, t') (we use units where h = 1): 

where 

G~(t ,  t ' )  =-- ((A(t); B ( t ' ) ) ) ~  = z F i O ( ~ ( t  - -  t ' ) ) ( [ A ( t ) ,  B(t')]) 
g g 

(1) 

O(t) = 1, t > 0: O(t) = 0, t < 0 (2) 

[A, B] = A B  - -  B A  (3) 

A(t) -= eiamAe -i~e~ (4) 

( ' " )  = (I/Z) Tr{e - ~ . . . }  (5) 

Z = Tr{e -r (6) 

= 1/kT (7) 

(k is Boltzmann's constant) and ~ is the Hamiltonian of the system which we choose 
in the form 

1 
= - ~ Z J o ~ ( s .  �9 so) ,  J . .  = 0 (8) 

a,b 

where a and b label the sites of a lattice of N spins of magnitude S and J,0 ( =  Jn,) 
is an exchange energy. 

For the following, we need only the following results (for detailed derivations we 
refer to the literature, e.g., References 4 and 5). If ((A; B)) (without the time arguments 
and the subscripts) denote the Fourier transform of the G(t, t'), 

f'2 ((A; B} -- ((A(t); B(t'))) e ~ - ~ ' )  d(t -- t') (9) 
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one finds, first of all, that the (<A; B)) satisfy the equations of motion 

w(<A; B)) ---- ([A, B]) + <([A, J4f]; B)) (lO) 

and the value of the correlation function < B ( t ' ) A ( t ) ) ,  which we will need later, is 
connected with (<A; B)) through the relation 

<B(t')  A ( t ) )  - -  2zri J ~ doo e -~~ 
_ e B ~  - -  1 

(11) 

In (10) we note the appearance of so-called higher-order Green functions. In 
the early RPA applications, one began with Green functions such as ((S,+; Sb-)) 
( S ~  = S ,  ~ ~= iS  v), which are coupled by the equation of motion to Green functions 
such as ((SdS,+; Sb-)). The main assumption of the RPA method was then to put 

((so%+; &-))  ~_ (s~)((so+; &-))  (12) 

The quantity (S ~) measures the long-range order (magnetization), and as long as 
it is nonvanishing it should be the main determining factor for the behavior of the 
system. It is determined self-consistently from the equations of motion for the Green 
functions (e.g., for the spin-�89 case it is directly related to ( S a - S ,  +) which is through (11) 
determined by ((S,+; S~-))). 

However, in the paramagnetic phase where there is no external field, <S ~) = 0 
and the RPA decoupling (12) ceases to be useful. We must therefore look for a 
different kind of decoupling, which we shall do in the next section. We shall discuss 
the results of solving the self-consistent equations in the later sections of the paper. 

2. D E C O U P L I N G  OF T H E  E Q U A T I O N S  OF M O T I O N  

We consider the following dyadics (indicated by boldface roman type): 

G}~' = (<St; S~)) (13) 

We use the elementary commutation relations for spin operators 

[Sa i, Sb j] ~ iEijkSak~ab (14) 

where Ei~k is the antisymmetric third-rank tensor: 

6ii k : 1 

---- 0 

if ific is an even permutation of 123 ) 
if i j k  is an odd permutation of 123 } 
otherwise ) 

(15) 

and where i, j, and k are Cartesian coordinates. 
From (8) and (10) we then find the equations of motion 

o~<<sr; sg>> = <[st, s .])  + i y~ Jto<<[sr ̂  s.]; s~>> (16) 
a 
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By taking the (double) scalar product (e~ § ie~ �9 ((St); (S~))  �9 e x - -  iey),  where e~ and e~ 
are unit vectors along the x and y axes, we find from (16) the usual RPA equation. 
As we cannot use the RPA decoupling, we must go to the next order and write down 
the equation of motion for (([S.f A Sh]; S~)) ,  which is 

o~(([S.f ^ sh];  & ) )  = ( [ s . f  ^ sh] ,  &])  

-[- i ~ (J.f.(([[S.f A S.] A Sh]; S~)) 
a 

+ J,,.~([s.f ^ [s,, ^ &]]; &))} (17) 

We now expand the triple vector products by using a standard identity for classical 
vectors, in which additional terms appear due to the noncommutativity of the spin 
operators. The number of new terms depends on the order of operators. For example, 
we have b o t h  

[[S.f A Sa] A Sit] = S a ( S f .  Sh) - -  S . f (S  a . Sh) -Jr- i[S.f A Sh] ~af (18) 

and 

[[sr ^ s~] ^ & ]  = (s~. &)  so - (so. & )  & § i[s~ ^ & ] (~ r  + ~ )  

- i t &  ^ &]  ~o,, (19) 

If we order the operators so as to minimize the number of commutator terms that 
appear, and use the fact that J . .  = 0, we have from (17) 

~o<<[s.f ̂  s,,]; s~>> = <[[s.f ^ &], &] )  

+ i 2 {J.f.{<<Sa(S~" Sh); &>> -- <<S.f(S. �9 &); s.>>} 
a 

- Y,,a{<<(S~ " S . )  &; &)) - -  <<(S~ �9 Sh) S . ;  & > } }  (20)  

The commutator terms do not appear at all in this equation, and thus we may say 
that it expresses a sort of semiclassical approximations. If we expand the triple 
vector product so that the extra spin operator always stands to the right or the left 
of the scalar product, we find an equation of motion with an additional term, 
~2J1"h(( [ ~ f  ASh] ; Sg)), which obviously alters the results considerably. (The negative sign 
comes from using (19); the positive sign from using the corresponding equation for 
the other triple product.) There seems no way a p r i o r i  of deciding which sign is 
correct, and in any case, application of our decoupling to (20) w i t h  the extra term 
leads to results quite unlike those known for the Heisenberg paramagnet. One way 
of resolving this ambiguity is to choose a symmetrized expansion of the triple product. 
In this, the additional term vanishes and we are left with (20) again. 

We now look for a decoupling to get a closed set of equations. As we are interested 
in correlations in the paramagnetic region, which means that ultimately we wish 
to calculate (self-consistently) the correlation functions related to the G m .f~, we try the 
decoupling 

( (Sa(S  [ " Sh); Sg)) ~ ( (S . f .  Sh))( (Sa;  Sg)) ( 2 1 )  
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and so on. We note (i) the similarity between (12) and (19), (ii) that other averages 
such as {S,~St~), which we might extract from the operator S,(S s �9 Sh), would cancel 
terms arising from Ss(S,.Sh) while averages such as ~S~Sru) vanish in a system 
where the total z component of spin is conserved, and (iii) that as usual we do not 
give any proof  of the Validity of  the decoupling, but hope that the results will justify 
our procedure. 

We shall use (19) and the short-hand notation (13) and 

(([S~ ^ Sh]; Sg)) = G}~,~ (22) 

<(&. &)> = ( 2 3 )  

( [S t ,  S l) = I~, z' (24) 

( [ [S r ^ Sh], ~ ] )  = I}~ (25) 

where we note that while in (13) and (22) two time arguments occur, in (23)-(25) all 
time arguments coincide. Equations (16) and (18) now become 

coG,S) = I~' + i ~  Jf a ~  (26) 
a 

and 

b 

As they stand, (26) and (27) can be solved by the usual lattice Fourier transform, 
based on the translational invariance of the system. Before doing this, we note that 
we can insert one exact relation into this approximation. In general (S,,. S , ) =  
S(S + 1) ~ F o . Now in (27), we always have a ~ f  because of (26) and the fact 
that J , ,  = 0; however, the summed index b can equal a or f and thus C,, = C o 
appears in front of the Green functions. We know exactly, from (20) and the above, 
that these are multiplied b y / ' 0 ,  and since therefore C O does not appear in the equa- 
tions, we should replace it b y / ' o  �9 [No additional approximation is introduced here, 
and in fact failure to include this exact information leads to completely unphysical 
results, for example, nearest-neighbor correlations proportional to the temperature. 
This is not surprising, for i f / ' 0  is not included, as in (27), nothing in the equations 
specifies the magnitude of the spin S.] To preserve the symmetry of the equations, 
however, we find it convenient to perform the replacement by subtracting the term in 
C O and adding that in ;'0 separately, as follows: 

b 

' G'2'ro. = I(2',o. + i Z {J ,[C,oGg' - -  v, c,l, j + So LrCr  G.)o. - -  C. 
b 

+ - G )  ' - c . ' D  (28) 

The better the decoupling approximation, the smaller the final term in (28). Why, 
then, is it essential? The reason will become clear when we get to the implicit equation 
which expresses the self-consistency condition. 
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We now calculate the Fourier transforms and write 

G(1)(|(1) J~) = ei(~'a-b) Cab' J b )  z ~z ' Kz Z G(1)(Ia) ab ~. ab ~ 
a--b 

G(2) (I(~,) ) = ~ dO. . . . .  )+i(ix.b-~) G(2) (1(2) ) 
~lx ~,IX abe abe 

a - -c ,b - - c  

(29) 

(30) 

and assume inversion symmetry of the lattice so that, e.g., Ja = J_a.  
Equations (24) and (27) now become 

i j G(2) 
IX 

wG(2'z. = I(2),~o 4- i[(K o - -  Kz) Jo+z 4- K z J  ~ - -  K J~]  Gin_z+, 

-4- i ( F  o - -  Co)(J ~ - -  J ~ G m it] k + v  

(31) 

(32) 

Eliminating ,~z~-(2) and solving for G[ ~), we find 

i 
oJI~ 1) + ~ ~ J 1 (2) 

Ix ~--IX,IX 

,r'~z,q.j.~) = 032  - -  COL 2 
(33) 

where 

1 
~~ z = N ~" {K.(Jix - -  J).) 4- ( F  o - -  Co)J.}(Jix - -  Jz_ix) (34) 

1.1, 

3. E X C I T A T I O N  E N E R G I E S  

Equation (33) gives us G (1) but in it occur the Kix as parameters. We must thus 
express the Kix by means of(11) in terms o f G  (z) and then solve the resultant equation--  
as is done for (S  z> in the RPA theory. 

We first note that the G m are dyadics while the Kix are scalars. We must thus 
use equations such as 

( ( S s "  Sg)> = Z (ek " <Sr �9 e~) (35) 
k 

where the ek (k = x, y, z) are unit vectors along the Cartesian axes and where the 
dots on the right-hand side of (35) indicate scalar products with the vector immediately 
behind or in front of  the unit vector. 

From the commutat ion relations for the spin operators one finds after straight- 
forward calculations 

Z (e~. I(Z)~o " ek) = 2i(Kz --  K )  (36) 
k 
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One can now take (33), decompose the right-hand side into partial fractions, and 
use (ll) ,  (35), (36), and the fact that in the K x the time arguments coincide to find 
the implicit equation 

Kz -- coth�89 I 
cox N ~ K~(J. -- Jx-.) (37) 

~t 

To make the discussion more transparent, we shall restrict ourselves to the case 
of nearest-neighbor interactions only, so that, if A indicates here and henceforth a 
nearest-neighbor vector, 

d.b = J3..e+a (38) 

where we, moreover, have assumed J to be independent of 4. We introduce the 
following notation: 

l a~ er Ux = 1 -- ~x (39) ~'x ~ z 

where z is the number of nearest neighbors. From (39), (38), and (29), it follows that 

Jx = zJ~'x (40) 

We also use the helpful identity 

1 1 
N Z F.yx_. = ~/x ~ ~ F.V. (41) 

Ix ~t 

where F~ is the lattice Fourier transform of a function F, whose value is independent 
of lattice direction for r = ZX. The identity follows from using (39) for "~'x-~, inverting 
the transform of  F~, using the spherical symmetry of FA, and retransforming to 
F, again. 

Using (40) and (41), (37) becomes 

Kx = zJC1 u,. coth �89 (42) 
O)  x 

where Cz is the nearest-neighbor correlation function 

C 1 ~ Ca,a+ A = < ( S a , S a §  ) (43) 

which is independent of A since both the Heisenberg Hamiltonian and the para- 
magnetic phase are spherically symmetrical. 

Similarly, we can manipulate (34) and find 

where 

oox~ = z2J2C~ux(x -~ + ux) (44) 

x _ l  /10 - Co ~2A, C..o+A+A, - -  z G  (45) 
- -  z C 1  + zC1 
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Note that because of the first term, Co does not appear in the sum in the second 
term. 

To see the physical meaning of )/ we note that for small )t we have ux ~ a)t 2 
(we use the assumed inversion symmetry), so that as )t --~ 0 we have from (44) and (42) 

2 1 
Kz ~ f lzJ  X -1 -~- a)t 2 (46) 

the Ornstein-Zernike form (~8) for correlation functions near a phase transition. 
Noting that 

Kx = (I Sx [2} (47) 

and that thermodynamics relates the zero-momentum fluctuations with the static 
susceptibility Xstat as follows 

(I & 13) - 

where t~B is the Bohr magneton, we see that 

3 
fl/j.B2 Xstat (48) 

3 z J  
X --  2 t~B 2 Xsta* (49) 

where the factor 3 comes f rom summing over the three spatial directions. Note that 
because of (44), X -~ must always be positive for the Green function formalism to go 
through, since X -1 < 0 means that wx is imaginary for • near the origin. Thus the 
vanishing of X -1, which (45) indicates will occur as the temperature is lowered from 
infinity if the Cab increase as intuitively expected, defines the breakdown of the decoup- 
ling approximation. We may interpret this as due to the onset of ferromagnetic 
ordering: thus the transition temperature Tc for this theory is that at which X -1 
vanishes. 

For  positive X -~, the poles of the Green function, i.e., what this theory sees as 
excitations, occur at the energies :~c~. given by (45); oJ~ as a function of x has quite 
different forms for high and low momenta,  if X -1 is not too large: 

~o~ ~ zJ(qx-1)~/2 u~/2, x -1 >~ u~ (50) 

co x ~ zJC~/2u~, X -1 ~ u~ (51) 

The changeover occurs at momenta  of  the order of A 0 , which is defined such that 

ua ~ --~ X -1. For X -1 very small, since u~. ~ a)t 2, we have )t o = ~v/(X-1/a). Note that 
the high-momentum form (51) has the momentum dependence of spin-waves, which 
tends to confirm the idea that quasi-spin-waves should appear near the critical point 
for small but nonzero wave vector, and that )to is proportional to )/-1/2, as in Bennett's 
theory. (12) In this order, the theory reveals nothing about the damping of such excita- 
tions, but it definitely supports the suggestions of  their existence. The low-momentum 
form for ~oa, (50), is linear in A for small )t. No such excitation has been suggested 
so far. I t  would be interesting to see what the inclusion of damping does to this form. 
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Using the relation (in fact the definition of Co, since it is not a decoupling 
parameter) 

1 ~ K,. (52) C o = W -  ~ 

we can write our self-consistent equations (42) and (44) in the form 

1 
C~ = N -  ~ K~.y~ 

1 (y2 ! ) +  
C~(x -I + ]) = -~- ~ Kz - - -  

(53) 

I"0 (54) 
Z 

where Kz satisfies (42) and co x is given by (44). 

4. T H E R H O D Y N A M I C  RESULTS 

We can find a formal solution to these equations by expanding coth �89 z in an 
infinite series. This allows us to evaluate the sums over momenta. The expansion is 
valid for �89 z ~< ~r, and since X -~ must increase at most as T at high temperatures, 
and C~ should decrease with temperature, the  expansion should work for /3  suffi- 
ciently near zero. In fact, the expansion turns out to be good everywhere that the 
decoupling succeeds. Inserting the expansion m) in (53), we find 

1 zJCluz7~. [ 1 '1 .2~-1~ 

where D2k = 22kB2k/(2k)! and the B2k are the Bernoulli numbers. 
From (44) and a slight rearrangement, we have 

6"1 Z' 1 Y~~ + (56) C1 := 2 r - ~  X- l + u ~  2r z 

where r = 1/fizJ is the reduced temperature and 

1 

A corresponding expansion for (54) gives 

where 

1 yz~-- 1/z 
C~(X - ~ +  1) = 2 r - ~  X- ~+u)o c~ , & (ss) 

] /1 \2k--2 
(59) 
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Of c0urse 27z and L'2 depend on C~ and X -1, so (56) and (58) are still implicit equations. 
However a useful relation results from treating Z' 1 and Zz as parameters and substitut- 
ing for C~ in (58) its value given by (56). In terms of the variable r = X -* + 1, 
a lengthy rearrangement leads to the implicit equation 

Here 

(~b - -  Z.z/Z~) + (Fo/z)(1/S~ - -  1/27) 
F0(r = - -  

l yx n 

(60) 

These functions appear frequently in the theory of ferromagnetism (2o) and have 
been exhaustively discussed by Mannari and Kawabata. (m) In the manipulation 
leading to (60), we have used the identities 

where 

1 
yz = 0 (62) 

N 

F~(r = ~brl(r F1(r = r 1 6 2  1 (63) 

which are easy to derive from the definitions (39) and (61). Although in principle (60) 
can be solved, since all the functional forms are known, it is still too difficult to work 
with. But its important features appear if we neglect all terms of O(1/r) and higher 
in the series expansions. Checks confirm that nothing significant is lost by this 
simplification. For  cubic lattices, F0(~b ) depends on the elliptic integral K(kZ)(~0.21); 
this dependence is simplest for the body-centred cubic structure, and the following 
discussion will be confined to that case, where we have 

1 1 4 K2(k2) Fo($) =- 7 H ( r  - -  r 

k 2 = �89 -- �89 ~/'1 -- 1/~b 2 (65) 

Thus, since the first term of X1 equals 1/3z and that of X2 vanishes, (60) becomes 

H(r = r -- 3F0)/(r 2 -- 6r -- z -1) (66) 

This equation has a single solution for all r >~ re ,  where the reduced critical tem- 
perature % is 

�89 o 3 / '  0 -/Fo(1)(1 -- 1/z) - -  1 
% -  Fo(1)[ 3/"o ] (67) 

As mentioned above, this critical temperature corresponds to the vanishing of X-L 
Note that % is not simply proportional to /-'o, as in the RPA theory, although the 
factor in brackets is close to unity. The RPA value, (") which is numerically very close 

(64) 

(61) 
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to that found in the Bethe-Peierls-Weiss (cluster) theory and by extrapolation of 
high-temperature series, (2~ is 

r~RpA)_ �89 _ k 0~ (68) 
~ Fo(1) zJ Fo(1) 

where 0~ is the transition temperature from molecular field theory. Comparison of (67) 
and (68) shows that in a sense the present theory describes a Heisenberg model with 
molecular-field transition temperature 0~ = ~-0r This feature will reappear. 

In an exact theory, the sum Co = (1/N)Z~K~. equals To:  the departure of  
Co --  F0 from zero is one measure of the accuracy of our approximation. At % ,  
we have Co -- F0 at most I0 ~o of Po for spin �89 and much less for higher spin. This 
observation brings us back to the problem that the success of the decoupling seems 
to be due to introducing a parameter (Co -- Fo) which goes to zero as the decoupling 
improves. A glance at (60) reveals the reason. The terms in 1/z are due to the addition 
and subtraction of Co in (28). I f  they are removed, the resulting equation can only 
be solved if one of the following two conditions is met: 

(i) H(r = 1, which can only be satisfied in the limit r --+ o% or 

(ii) r - -  Z~2/Z~ = 0, which leads to entirely unreasonable results, as demonstrated 
in the appendix. But if C o - - / ' 0  differs from zero, by however little, the 
additional terms appear in (60) and the character of the solution is changed 
entirely: it becomes reasonable, and even agrees rather well with other 
theories. 

Near the critical point, the series expansions for X and the specific heat C, 
the most relevant thermodynamic quantities, are as follows: 

r 4.95 "1 

= 1.10x (, - - 1 . 3 7 x l  [ 1 . 7 3  + 3 s ( s  + 1) - 1 1  ("  - X 

+ O((r --  r~)') (69) 

C [4.92.r~X12 i2.56 -}Fk -- 0.78 § 2~'~X~ + .:-- 

+ O((~  - -  ~ ) 2 )  

2.48 t 
3S(S -1- 1) - -  1 I --  4X1] (r - -  r~) 

(70) 

where X1 = 6Fo/[3S(S + 1) --  1]. The leading term in X is the quadratic one, as in 
the spherical model and the RPA theory, and the specific heat C is constant as r~ is 
approached from above. 

At high temperatures, we expand in powers of  1/T, and find 

Xstat = [IxB2S( S + 1)/3kT][1 -}- (~ @ 3) Oc/T + O(1/Ta)] (71) 

where 8 is very small. The exact high-temperature series (zz~ starts as follows: 

Xst~t = [~B2S( S -c 1)/3kT][1 -r Oc/T-~- O(1/T~)] (72) 

Here again, the approximation seems to describe a model with a different 0c, 0c = ~ 0~. 
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The nearest-neighbor correlation is proportional to T -1 and leads to a specific heat of 
the form 

C = N k  (_~)2 0 2 I T  2 _+_ O(T-3) (73) 

where the exact result is 

C = 3Nk(Oo~/r 2) + o ( r  -~) (74) 

Finally, the sum Co is 

C O = F o q- I[S(S  + 1) zJ /4kT]  2 + O(T  -~) (75) 

Thus Co -- Fo is small at high temperatures as well as near the transition temperature. 

5. C O N C L U S I O N S  

We have shown that a simple Green function theory predicts the phase transition 
of the Heisenberg paramagnet, as well as most of the qualitative thermodynamic 
behavior, both at high temperatures and near the critical point. Our theory also 
contains several suggestions as to the microscopic nature of the paramagnet: in 
particular, it predicts excitations with a spectrum co~ given by (44), and correlation 
functions Kx given by (42). These results are already supported by a certain amount of  
evidence, as we have indicated, but neither has been firmly established. Our theory adds 
weight to the evidence and suggests the way ~% and Ka are related. Furthermore, (45) 
relates the susceptibility to the correlation functions, and it would be interesting to see 
whether this relation is accidental or is generally useful. 

A P P E N D I X  

Decoupl ing W i t h o u t  (C O - -  to) 

Here we will discuss the solutions of the equation 

which is the appropriate self-consistent equation in our decoupling if the terms in Co 
are not eliminated from (27). As we showed in Section 4, (A.1) follows from (60) 
simply by removing the terms in 1/z. (This reflects nothing profound about z; it has 
been retained as a handy label.) Note further that the definition of Z2 must also be 
changed, since from (59) it contains terms in 1/z. The proper quantity for (A.1) is 

oo 

= 1 2~-2 (A.2) 
k = l  ~, 

The natural way to attempt a solution to (A.1) is the series-expansion approach of 
Section 4. This must work at sufficiently high temperatures if the solution is to be 
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physical ly  reasonable ,  so tha t  i f  i t  fails, we au tomat ica l ly  know tha t  (A.1) is no t  the 

r ight  equat ion.  Quick evalua t ion  of  the leading terms in Z' z and  Z'2 gives 

D~/z + O(T  -~) (1 .3)  
= __D2/z -~ O(T -1) 

where now the fac tor  1/z comes f rom the sums ( I / N )  ~ z  u2 ,  not  f rom the term in 

Co - -  2'o. We  quickly see tha t  

~b -~ X -1 + 1 --- --1 + O(T-O (A.4) 

This implies  a negative susceptibi l i ty at  high temperatures ,  and  f rom (56) a nearest-  
ne ighbor  corre la t ion  C~ which is negative and  increasing with T. Thus (A.1) leads 
to entirely unacceptab le  results,  and  we may  therefore  reject it. 
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